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Abstract—A micromechanics model is developed to detail various aspects of anisotropic damage
behaviour of cross-ply composite laminates. Attention is focused on multi-ply laminates so that a
calculation model can be devised, which is composed of a cracked transversely isotropic ply
sandwiched between two self-consistent orthotropic plates of relatively large thickness. Under in-
plane loadings restricted to the laminate plane, intralaminar cracks first develop from two families
of plics independently, subject to mode | and mode 11l crack driving forces. The stabilized crack
configuration is that of parallel trans-ply cracks with a mutual shielding eflect. As the intralaminar
cracks touch the interlaminar boundarics, the initial delamination is triggered by large interfacial
shear stress and then terminated by a dramatic drop in the driving force. An interaction calculation
shows that intralaminar cracking is priviliged at relatively low load level, but then overrun by
interlaminar cracking at a refatively high load level. This switch in crack formation constitutes
the so-called Characteristic Damage State. By introducing a higher order model allowing shear
deformation in the central broken ply, a finite value of the interlaminar shear stress at bonding
cdges can be achieved. A pscudo-clastic damage behaviour can be predicted, along with the absence
of permanent damage steain, i perfect interlaminar adhesion is maintained. The solution in an
idealized non-interactive interlaminar slip model is henceforth constructed, which gives rise to
permanent damage strain, stabilized hysteresis loop and residual interluminar stress after unloading,.

I. INTRODUCTION

The damage in composite laminates is highlighted by a very organized geometric pattern,
especially for cross-plies. This distinctive feature promotes deterministic micromechanics
models to demonstrate the gradual damage processes characterized by cracking and loca-
lized slip. Recently, many research efforts have been devoted to the micromechanics mod-
elling of composite materials. Budiansky er al. (1986) delineated the cracking process of
composites reinforced by unidirectional fibres, whereas the overall moduli of such composite
plies have been carefully estimated by Dvorak et al. (1985), Dvorak and Laws (1987), Laws
and Brockenbrough (1987) and Laws and Dvorak (1987), by means of linear elastic fracture
mechanics calculations, incorporating self-consistent schemes. For composite laminates,
Hashin (1985, 1986, 1987), and Han and Hahn (1988) studied the intralaminar cracking of a
sandwich cross-ply by employing either a statically equilibrium or a kinematically admissible
field. In contrast to the phenomenological study based on continuum damage theory, e.g.
Talreja (1985a, b), the micromechanics study provides more details to the cracking process
in composite laminates, and relies on fewer empirical damage characterization parameters.

It is well recognized, for example, from the experimental works of Highsmith and
Reifsnider (1982, 1986), and Jamison er al. (1984) that the damage development in com-
posite laminates is featured in several stages, namely the initial stabilized intralaminar
cracking, the incipiency of interlaminar cracking, the characteristic damage state followed
by significant delamination and then concluded by fibre breaking in the favourably oriented
plies to final rupture. The experimental data also suggest the existence of a gradually
increased permanent damage strain, as well as the localized residual stress. In the present
paper, a micromechanics model encompassing the aforementioned features is attempted,
with the emphasis on the interaction between intralaminar and interlaminar cracks.
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However, the fibre breaking phenomenon in the plies aligned with the load, as well as the
gradual rupture of favourably oriented plies are beyond the scope of the present treatment.

2. MICROMECHANICS MODEL

The laminates under consideration are composed of many elastic cross-plies, with
particular reference to graphite/epoxy cross-ply laminates assemblied by 16-20 relatively
thin plies. The plies belonging to two ply families (1) and (2) orthogonal to each other are
alternatively bonded together and subject to the loads lying on the laminate plane, as
delineated in Fig. 1. The ply thicknesses of each family are designated by ¢, and ¢,,
respectively. Obviously, V., vanish, with x, reserved for the thickness direction. Latin
indices have a range from | to 3 unless notified otherwise, and summation over this range
is implied for repeated indices. The average stresses (symbolized by a super-imposed bar)
are

6.‘/’ = N:j/tv (l)

where ¢ is the total thickness of the laminate. The loading processes can be controlled by
the total amount of either displacements or resultant forces : they are related by

& = Miubu, )

where M,,, are the macroscopic secant compliance moduli. The conventional matrix
notation is adopted

Ex = Mﬁﬂ(;ﬂ (a.l’ = l.....6)‘ (3)

where £, and 6, are scquenced in the standard anticlockwise manner. For example,
EI = En....,E“ = 2E|2. etc.
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Fig. 1. A rectangular laminate with many cross plies subject to in-plane loading.
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Fig. 2. Reduction to two similar plane problems by the non-interacting assumption for the damage
in the two families of plies.

The problem illustrated in Fig. 1 can be decomposed into two almost identical two-
dimensional problems as elucidated in Fig. 2, except for the coupling effect produced by
the in-plane shear stress 6,;. Each problem is further simplified by the presence of only
mode [ and mode III fractures. Without loss of generality, we only pursue the analysis of
the problem residing in the (x,.x;) plane. To make it tractable, the multi-ply geometry is
approximated by the configuration shown in Fig. 3, that is, a central ply with specific
cracking pattern sandwiched by two neighbouring blocks of ply assembly with equivalent
damage moduli M,,. Accordingly, the periodic fluctuations in the compliance moduli in
the two neighbouring blocks are ignored. As long as the macroscopic compliances for the
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Fig. 3. Sandwich assumption. (a) Initial intralaminar cracking. (b) Interaction between intralaminar
and interlaminar cracks.
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central ply M}y (as well as M3 in the similar problem) are obtained, M 4 can be evaluated
by a simple mixture rule:

My '=c My +e.M3 ', @)

where ¢, and ¢, are the thickness fractions of plies belonging to families (1) and (2),
respectively. The damaged moduli for the single ply (M5 or M{}') can be calculated from

My = M,+D.), etc. (3

where D} are the damage-induced compliances and can be calculated from the macroscopic
damage strains:

2" = D", etc. (6)

The uncracked moduli, M,,. are measurable from a single-ply specimen, and should have
the symmetry of transverse isotropy described by :

l v v,
E £ % ° 0
v 1 v,
"¢ & £ °° 0
v, v, i
"t g & °° 0
M, = | . ©))
0 0 0 ~G- 0 0
0 0 0 0 L 0
G.
2(L+v)
L0 0 0 0 0 3 1.,

where z labels the fibre direction as well as the axis of transverse isotropy. For plies belonging
to family (1) and family (2) = corresponds to x; and x; axes, respectively. The macroscopic
moduli for cracked plies, M{) and M.}, as well as their average M, through (4), are
orthotropic.

3. FORMATION OF INITIAL INTRALAMINAR CRACKS

At the initial stage of intralaminar crack formation, the interlaminar shear stress
transmitted through the bonding seems to be negligible under remote uniform displacement
loading. A non-interacting calculation is then conducted on the central ply, weakened by a
stack of parallel intralaminar cracks, as described in Fig. 4. Extended by periodicity, the
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>

Fig. 4. A central ply weakened by a stack of parallel cracks with interlaminar interaction neglected.
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problem in Fig. 4 is similar to the problem of double periodic crack arrays in an infinite
transversely isotropic medium. Its solution can be approached through the continuous
dislocation distribution method by Bilby and Eshelby (1968). The solution is simplified by
the recognition that those straight dislocations are aligned with the transverse isotropy axis.
Without entering the details of the formulation [the procedure for the mode I in the isotropic
case is illustrated by Delameter er al. (1975)], it can be shown that the dislocation
distribution functions D, and D, for mode I and mode III fractures are governed by the
following uncoupled singular integral equations:

€ 1
I Dl.m(-‘:'z)[‘—~ +I |.m(-‘z,-"'z)]d-‘7'z = ELuns ®

- X7—X,

for all x, belonging to the range (— ¢, ¢), argumented with the closing condition of cracks:

J Dy(x)dx; = 0. 9

The regular kernels [, and [y, for mode [ and mode 11 cracking are:

1 hd n
Fxs, x5 = o v'»+ Z {g coth [;‘; (x5y—x, +nt.)]
n\, S .
- (i—‘;) (x3—xy4nt))sinh~* [2{; (x5 ~x; +nl,)]}.
, | T - n
FCilx.. xy) = oy + 5 Y. coth ;,;(xz—-xz +aty) |, (10)
42T A Nl -~

where the geometric parameters g, ¢ and ¢, are elucidated in Figs 3 and 4. The applied
strains g and g, for the dislocation formation are :

5|=47‘(1—V:2)%., By = 21—, an

Q

where the notation of the material constant in (7) is preserved.
It is recognized in the literature that singular integral equations like (8) produce
solutions possessing square root singularity at both ends. Therefore, if one writes:

By () X3
———— u N o

3 "'c'
a/l—u’

then B, and By, are skew-symmetric, dimensionless functions bounded uniformly in the
closed interval [— I, 1]. Their solutions can be effectively obtained by the Gaussian-Cheby-
shev integration formula developed by Erdogan (1980). The results rely on two dimen-
sionless parameters p and ¢ defined by:

Dyyy(xy) = (12)

[N IR~
Wy

a3

N
I

<
I
|

[
o

It can be established that the stress intensity factors K; and K|, relate to the end values
of B[ and Blll by
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K] =q NCBI(I). K"] = f‘/ ncBul(l). (14)

The non-dimensionalizations in (12) are engaged in such a way that B(1) and B,;(1) are
exactly the ratios between the stress intensity factors of double period cracks and those of
a single crack in an infinite medium, as justified in (14). B,(1) and B,;,(1) are plotted versus
p for a set of g values in Fig. 5, and their values for an array of p and g settings are listed
in Tables 1 and 2. The results presented in Table | are virtually identical to those from the
same problem, calculated by Delameter et al. (1975) from a somewhat lengthy com-
putational scheme. For both mode I and III cases, the calculations indicate an unstable
tendency for cracks growing toward the interlaminar boundary, as well as a stable shielding
effect by the birth of parallel cracks. This suggests that the intralaminar cracks will propagate
rapidly towards the interlaminar boundary. Blocked by a favourably oriented ply, the
further crack propagation will be predominantly in the x; direction, as illustrated by Dvorak
and Laws (1987). For initial intralaminar cracking, the crack opening displacements §, and
Oy are given by :

e | Y Buu(s)

following from (12) and the kinematics of crack dislocation. By the property of the Cheby-
shev polynomials, A, in (15) can be directly summed as:

Orm(xz) = ds = ce B (). (15)

Al.lll(“j) = 2‘*‘ Z Bi(s): j=1,....2m—1, (16)
kwejrl
where
I 2k—1
u; = Ccos (;-}‘) Si =cos( . n). Lk=1,....m, 17

are the zeros of the Chebyshev polynomials T, (s¢) and U,,_,(u;), respectively. The
macropscopic damage strain £) caused by the crack opening is

1 <
5?1.” = Z“;‘I‘J Opn(x2) dx,. (18)

3

Substituting (15) and exchanging the order of integration, one arrives at:

E[l)l.ll = & .mGrn(p 9. (19)
where
gun(p.q) = ;q—(“i—;‘ﬁkgl 5k By (5e)- (20)

Functions g, ;;; depend only on the geometric parameters p and ¢ and solely characterize
the effect of crack geometry on the macroscopic damage strains, henceforth the overall
moduli; g, and g,,, are tabulated in Tables 3 and 4 for the same array of the (p, g) parameters.

The combination of (5) and (19) furnishes the secant moduli for the cracked central

ply of family (1):
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Fig. 5. Dimensionless stress intensity fuctors for the initial intralaminar cracking. (1) Mode [

(b) Mode H1.

i , i
M} = E‘“ +an(l—v)g(p. ). M = g [H+2n9um(p, )l

@n

An identical procedure can be employed for the plies of family (2). After using the mixture

rute (4), we finally arrive at:
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Table 1. Dimensionless stress intensity factor of intralaminar cracking,

mode [
alc £,/2c =20.00 5.00 250 1.67 1.25
20.00 0.99678 1.00134 1.03912 1.13674 1.4066
10.00 0.98794 0.98575 1.00871 1.08589 1.31057
5.00 0.95412 0.95175 0.94833 0.98927 1.14369
4.00 0.93095 0.92980 0.92025 0.94535 1.07210
3.00 0.88638 0.88614 087523 087966 0.96889
2.00 0.78960 0.78960 0.78487 0.77188 0.81100
.00 0.57028 0.57028 0.57020 0.56507 0.55730
0.50 0.39895 0.39895  0.39895 0.39881 0.39209
0.25 0.28210 0.28210 0.28210 0.28210 0.28210

Table 2. Dimensionless stress intensity factor of intralaminar cracking,

mode I
ajc t,/2c = 20.00 5.00 2.50 1.67 1.25
20.00 0.99904 [.00850 1.05318 1.16089 1.45599
10.00 0.99597 1.00098 1.03836 1.13527 1.40456
5.00 0.98412 0.98495 [.00716 1.08324 1.30672
4.00 0.97554 0.97583 0.99162 1.05768 [.26085
3.00 0.95798 0.95802 0.96626 1.01678 1.18953
2.00 0.91380 0.91380 0.91569 094240 1.06578
1.00 0.76417 0.76417  0.76419 0.76709 0.81075
0.50 0.56316 0.56316 0.56316 0.56320 0.56944
0.25 0.39896 0.39896 0.39896 0.19896  ().39896

Table 3. Normalized damage strain for intralaminar cracking, mode [

ale 0H/2c = 2000 5.00 2.50 1.67 125
20.00 0.00097 0.00391  0.00811  0.01325 0.02112
10.00 0.00193 0.00770  0.01573  0.02521  0.03909

5.00 0.00373 001487  0.02958  0.04582 0.06778

4.00 0.00454 0.01815  0.0589  0.05475 0.07936

3.00 0.00576 002302 0.04548  0.06798  0.09563

2.00 0.00762 0.03050  0.06069 0.08928 0.12019

1.00 0.01017 0.04068 0.08135 0.12146  0.15902

0.50 001134 0.04535 0.09069 0.13603  0.18057

0.25 0.01189 0.04755 0.09510 0.14264 0.19019

Tuble 4. Normalized damage strain for intralaminar cracking, mode 11

ale 1,/2¢ = 20.00 5.00 2.50 1.67 1.25
20.00 0.00098 0.00394 0.00824 0.01358 0.02198
10.00 0.00195 0.00782  0.01622 0.02648 0.04222

5.00 0.00384 0.01539 0.03143 0.05038 1.07810

4.00 0.00476 0.01906 0.03969 0.06144 0.09403

3.00 0.00623 0.02494 0.05026 0.07870 0.11805

2.00 0.00890 0.03561 0.07134 0.10934 0.15840

1.00 0.01457 0.05827 0.11655 0.17513 0.23920

0.50 0.01940 0.07761 0.15522 0.23283 0.31112

0.25 0.02213 0.08853 0.17705 0.26558 0.35410

My =c E.+c £ My =M =M, (22)

L+4n(1=v)g(p.q)’

whereas the other compliance moduli are unaffected by the cracking. A simplificd scheme
for the micromechanics calculation on double period cracks was carried out by Aboudi
(1987) under an approximate cell modcel. Under the special case of homogencous and
isotropic materials, his approximate estimate agreed fairly well with the exact solution of
Delameter et al. (1975) [which is identical to the present analysis under the said situation,
as shown in Figs 2 and 4 of Aboudi's work (1987)]. The above results will become
transparent if we can cast them in terms of the average longitudinal and transverse moduli
E. and £ normalized by the respective non-damaged counterparts £., and £,.
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E. E _ _l=q 1
E,"E =" (8) Tvaapd)’ 23)
where
x = [4n(1—vi)] ", ﬁ=%—l, 24

and ¢, is the thickness fraction of the plies aligned in the sense of the corresponding tensile
moduli. The value of a defined in (24) is about 0.1. Accordingly, the case of g;(p, ¢) much
less than 0.1 would roughly predict an undamaged modulus, whereas the case of g,(p, q)
substantially larger than 0.1 would indicate a modulus correlating to the ply-discount
prediction. As one can find from Table 3, g,(p, g) can be very small for sparsely distributed
cracks and reach 0.2 for reasonably dense cracks. It is also shown clearly from (23) that
the increase in ¢, (the thickness fraction of the aligned plies) would effectively prevent the
stiffness reduction. All the above results agree qualitatively with the stiffness measurements
of Allen et al. (1987) and Groves et al. (1987) for Hercules AS4/3502 laminates, where the
two parameters x and B in (24) are taken as 0.088 and 14.1 respectively. Their testing
stiffness data, as shown in the solid curves of Fig. 6, concern intralaminar cracks occupying
the whole thickness of the plies. The constraining effect due to aligned neighbouring plies,
however, motivates our tentative taking of ¢ = 1.15 in our periodic configuration referring
to Fig. 4. The value of p can be determined by the number of cracks per inch measured in
their paper, together with the ply-thickness of 0.005 in. which they later specified in their
finitc clement model. The resulting theoretical predictions according to (23), as shown in
the dashed curves of Fig. 6, agree very well with the experiment data by Groves et al. (1987)
and Allen et al. (1987) for all cases. The same qualitative agreement with the experimental
data by Ogin et al. (1985) for GFRP laminates, is also observed. We emphasize that the

(0.90.01,

0.98

0.96

0.92

0.90

CRACK DENSITY

Fig. 6. The stiffness reduction by intralaminar cracking of scveral cross-ply laminates, vs the crack

density (number of cracks per inch of the ply thickness). Solid curves marked by symbols: the

experimental data by Groves et al. (1987); dashed curves: theoretical predictions from (23),
q=L15.
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present prediction (23) does not contain adjustable constants like most continuum damage
theories.
The changes in the Poisson’s ratios can be worked out from (22) and (7) as

25

where ¥, and V., are the undamaged values of ¥ and v. with £/E, given in (23). The decline
in the average Poisson’s ratios with the progression of microcracking agrees with the test
data.

4. INTRALAMINAR-INTERLAMINAR INTERACTION

We next turn to a discussion on the co-existence of intralaminar and interlaminar
cracks, as depicted in Fig. 3(b). For many ply laminates, the outside free surfaces seem to
have negligible effect on the central broken ply ; then Fig. 3(b) reduces to the situation in
Fig. 7 by symmetry. According to Erdogan and Civelek (1974), such a simplification is
justified if the ply number exceeds 10. The intralaminar cracks have a spacing 2a and the
interlaminar cracks have a one-side length & less than a. The decomposition into a plane
strain problem and an anti-planc shear problem is again observed. The periodicity on the
central ply cracking pattern is assumed for mathematical tractability. Attention will be
directed mostly to the plane strain problem ; parallel results for the anti-plane shear problem
will also be listed at appropriate places.

As a first step, we detach the bonding interface and replace it with a periodic shear
interaction stress t,(x,). The normal interaction stress is omitted because it is predominantly
compressive and altogether insignificant for a thin ply situation. The lower half-plane in
Fig. 7 is composed of an equivalent orthotropic medium with secant compliances M,,.
Under remote stress 4, a uniform strain differential

£= (M“ Z; )d = O'/E (26)

occurs under plane strain constraints, Additionally, the interfacial shear stress 7,(x,) pro-
duces an interfacial tensile strain:

Fig. 7. A broken ply symmetrically sandwiched between infinite blocks.
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c (fa-b ;o
g(x,)) = %S J cot [M]r.(.v’,) dx’. 27

b-a 20

This result can be established by the complex variable theory for anisotropic plane elasticity.
The dimensionless constant S in (27) only involves the material moduli M,,. Specifically,

s=tm{rte, 8)

-

where s, and s, are the roots of the characteristic equation of the particular solid :

—
By BT LN BN v i @9)
(B

5

+

5, and s, also serve as the coefficients of x, in composing two analytical functions of
z, = X, +5,%;, @ = 1,2. If D is real (which is usually the case for graphite/epoxy composite
laminates), 5, and s, are purely imaginary. D vanishes for transversely isotropic materials.
The quantities 6,,, 4,,, b3; and b, in (29) arc the plane strain macroscopic compliance
moduli. They are given by :

=

[

- MM, _
5“:5_" 5]2=M|2—Ml;"“a—:‘“ 522=M22—
My,

2
2

|

. b—oo = Moo- (30)

K<

-

3

The broken thin ply is treated by a higher order plate theory subject to plane strain
constraints. Specifically, the displacement field in the broken thin ply is approximated by :

= w.,<.n>+w=<-f'><27’?)-. W =gy, i =0, Gh

Here, the symmetry condition with respect to x, has already been enforced. If w, is set to
2zero, as frequently assumed in the literatures for similar problems, (31) reduces to the plane
stress theory of thin ply. However, the incorporation of w, permits a shear deformation
mode, which is compatible with interfacial shear loading and provides some interesting
insights to the problem ; (31) is similar to the deformation mode assumed by Han and Hahn
(1988) applied to sandwich composite cross-plies.

Under assumption (31), the kinematic conditions and all the continuity requirements
can be pointwisely satisfied, but the equilibrium equation can only be obeyed in a thickness
average sense. Using the transverse isotropy moduli as noted in (7), the interfacial tensile
strain of the broken plies is:

(1 +v)e, 201+ (= .
) — ’ _ i _ : ‘e
eMNxy) = 3E 0 (x)) E(—w)r, b_ur.(x.)dx. VE,, (32)
where
. v(l+v)
v= l—wy,’ (33)

is a compound Poisson’s ratio. In (31), the lateral contraction strain ¢, is approximated by its
average &, ; the latter should be consistent with the lateral deformation of the neighbouring
equivalent medium
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g =b,4. (39)

On the other hand, &, can be inferred by requiring that the average interfacial normal
pressure vanishes :

g = —vEh, (35)

where

a-b

2(0— b) b—a

s(h

eV (x,)dx,, (36)

is the average interfacial strain of the thin ply. Supposing that the interlaminar bonding
can withhold perfect adhesion at this moment, we derive an interfacial strain compatibility
equation from (26), (27), (32) and (35):

, A
mm—wuw=;j

'n cot{n(s—uw)df.(s)—1. 37

Equation (37) is cast in a dimensionless form to suit both plane strain and antiplane shear
situations. The derivation for the latter casc is omitted here. In (37), we have:

_ _T _’? _ A
YTk "“zb a) A=k o

and

. 2 149 o
Sy = —— v‘[ 7(x7) dx),

E£I| l‘-VV: b—u
_ 2(0+v)(1—w,)
ETNT30+9) 2@-b)
= _9 2= - cE1—vv.
g=p—vt, A SEl+\72' (39
for plane strain problems, and
Si( )———2 ) (x7) dx
AU) = G:Ell -ur) X X
1 N
£=— .
3 Z(H—b)
5= Mjsf, X--_— 50: M44A‘-l55. (40)

for anti-planc shear problems.
[t is observed that ¢ is a small parameter for well-spaced intralaminar cracks. The
asymptotic limit

S(w) = lim f.(u) @)

is governed by the degenerated eqn (37):
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§
%J' l'lCOt['I(S-u)ldf(S)—f(u)= I, f(£h=0. 42)

Equation (42) is a singular integro-differential equation with a Hilbert kernel. Equations
of this type have been discovered in Prandt! air foil theory [e.g. Vekua (1945)], stiffener
stress diffusion (Arutiunian and Mkhitarian, 1969) and thin film deposition (Yang, 1984).
The genererate form (42) will arrive directly if a plane stress theory forthe broken thin ply
is adopted. We intend to concentrate on (42) in the most part in this paper. The behaviour
of the solution for the perturbed eqn (37) will be discussed in Section 6.

As established rigorously by Arutiunian and Mkhitarian (1969). the normalized inter-
facial shear stress

t(w) =" (u), 43)
has singularities at « = + 1, and can be represented by :

T (u)
\/a)s (2nu) —cos (2n) ’

t(u) = (44)

where T(+ 1) is bounded and non-zero. From (38) and (44), one concludes that t(u) has a
square root singularity near the bonding edges as long as & # 0. As b tends to zero, however,
the singularity strengthens to a simply reverse singularity T(u)/[ﬁ cos (nu/2)]. This obser-
vation indicates an immediate delamination as soon as the intralaminar cracks reach
the interlaminar bounding surface. The immediate initial growth of interlaminar cracks
underlines the necessity to include the interaction between interlaminar and intralaminar
cracks. As this phenomenon is understood. we move on to discuss the case with non-zero
b, in which one has:

() =\/”ﬁ‘l_z. ue(=1,1), (45)

| —u

where B(u) is a uniformity bounded, skew-symmetric function. Utilizing the same procedure
outlined in Section 3, we obtain the following linear algebraic equations to determine the
values of B at positive discrete points s,(k = |,...,m) corresponding to the zeros of the
Chebyshev polynomial T,,,:

ki (An{cot [q(s,‘—u,)]+co_t [n(si +u))} +nH(G—k+ WBGs) =2m, j=1,...,m,

(46)

where s, and u; are given in (14) and H (e) is the Heaviside step function. The interlaminar
stress intensity factors K, and K can be computed from:

Kis= . l_ig‘_b\/27'(0—[’—)‘:)?1.:(-‘1), CY))

by their conventional definitions. Combining the above formula with (39), (40), (41), (43)
and (45), one arrives at:

Kis=d1y/0ik, (48)

where



1316 W. YANG and J. P. BOEHLER

P o= -_ﬁﬂn __E_l_w-'
ik [" E¢ ]\/25£|+v'2’

M\
&,=f< 2) JG.Ms. (49)

and - - . .

k= /32’—‘3(1) = k(1. A). (50)

is the normalized interlaminar intensity factor. The factorization in (48) separates the three
ingredients in the composition of the interlaminar stress intensity factor; ¢, ; represents
explicitly the effect of the loading and the material constants, whereas the second term gives
the square root dependence of the interlaminar K on the ply thickness. The first two
terms are irrelevent to any change of the crack geometries which might occur during the
interaction. In contrast, the third term, k. solely represents and depends only on the crack
geometric pattern. Through a theoretical analysis involving the Melin transformation, it
can be shown, Koiter (1955), that:

n

3 (51)

/lim)k(q./\) =1 for n<
The various valucs of k for diffecrent 2a/(4¢,) and 2b/(4t,) are documented in Table S.

5. CHARACTERISTIC DAMAGE STATE

We now look closely at the variation of k with respect to the two parameters ¢ and b
representing the intralaminar crack density and the degree of delamination, respectively.
As shown in Fig. 8(a), at fixed a values (or at a fixed intralaminar crack geometry), k tends
to infinity when b approaches zero, as argued in (44) for the reason of immediate initial
delamination, This initial delamination, however, soon arrests, due to the short range nature
of the interaction between two neighbouring bonding edges. Therefore, if the delamination
is governed by the interlaminar stress intensity factors K, and K,:

K, = Ku- K; =K, (52)
with critical values K,, and K, denoting the decohesion resistance of the interlaminar
bonding, one concludes that only a small amount of delamination is accumulated at the

beginning of the damage, due to the extremely stable character of the initial delamination,
as evidenced by the rapidly descending curves in Fig. 8(a) for small 4 values.

Table 5. Dimensionless interlaminar stress intensity factor

2bjit,  afAr, = 1000 1200 1500 2000  30.00

0.125 1.41730 1.41832 141822 1.41854 1.41665
0.250 1.26687 1.26824 126908 1.26917 1.26785
0.500 1.16188 1.16382 1.16516 1.16569 1.16483
1.000 1.09015 1.09310 1.09529 1.09652 1.09624
2.000 1.04053 1.04550 1.04929 1.05177 1.05241
3.000 1.01697 1.02421  1.02973 1.03346 1.03498
5.000 0.98493 0.99906 1.00903 1.01565 1.01900
7.500 0.92950 097041 0.99152 1.00348 1.00953
9.000 0.81416 094220 098042 099770 1.00584
9.500 0.68652 0.92699 0.97607 0.99584 1.00478
9.750 0.54406 091726 0.97371  0.99490 1.00427

9.875 041118 091165 0.97246 0.99443  1.00402
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Fig. 8. Variation of the novmalized stress intensity factor with respect to the crack geometric pattern.
{a) Fixed g vatues, (b) Fixed & values.



1318 W. YANG and J. P. BOEHLER

On the other hand, for a fixed value of b, k& is rather insensitive as new parallel cracks
emerge (or as a decreases), as shown in Fig. 8(b). This implies that the intralaminar crack
density can increase dramatically without a substantial rise in the applied load level.
Consequently, after initial delamination, the damage in the composite is dominated by the
increase of the intralaminar crack population, as frequently observed in experiments. The
multiplication of intralaminar cracks proceeds as the load increases until the plateau region
in Fig. 8(a) is reached. Then, a substantial amount of delamination becomes inevitable.
This switch of cracking modes from intralaminar to interlaminar is usually termed as the
characteristic damage state. From (49), (51) and the stress intensity factor criterion (52),
the occurrence of the characteristic damage state can be predicted at a load level of:

1
&I.J = _—Kh'.)r' (53)

/i

After the characteristic damage state, the remaining linking ligaments between neighbouring
plies return to a stable situation, as shown in both Fig. 8(a.b).

One way to estimate the crack geometric parameters a. and b, at the characteristic
damage state is the equal descending speed of k criterion postulated as:

o (a b, d (a. b
za“a‘(rr.'u.)-éz"(mr.) (54)

A more comprchensive approach relies on the energy released during the development of
damage. The interfacial displacement

e et
w(x) = | n sinfn(s =l o g (55)

sin (1s)

which occurs at the decohesion parts of the interlaminar boundary causes an elastic shrink-
back at the intraluminar crack tip:

5. = 2b[E+u(a) —u(a—b)] = Zat,’/x()%. 5%) (56)
where
a b _ b _}'_'L m sin [n(1 +5,)]
h(}.}—, Ir_,') T a + Zma,gI In sin [7(1 -5,)) Blse). (57)

The values for & are given in Table 6. The macroscopic damage strains produced by the
delamination are:

Table 6. Normalized damage strain 4 in the interaction case

2bfAt,  2afit; = 10.00 12.00 15.00 20.00 30.00

0.125 0.11678 0.09703 0.07726 0.05750 0.03781
0.250 0.14919 0.12464 0.09907 0.07395 0.0488S
0.500 0.19748 0.16464 0.13162 0.09847 0.06527
1.000 0.27359 0.22860 0.18315 0.13734 0.09130
2.000 0.39979 0.33528 0.26949 0.20268 0.13515
3.000 0.5118s 0.43085 0.34735 0.26189 0.17501
5.000 0.71350 0.60596 0.49178 0.37262 0.24994
7.500 0.92702 0.80351 0.65976 0.50352 0.33930
9.000 1.01357 0.90850 0.75490 0.57938 0.39160
9.500 1.02183 0.93990 0.78556 0.60427 1.40887
9.750 0.01659 0.95461 0.80067 0.61664 0.41747

9.875 0.01012 0.96167 0.80816 0.62286 0.42177
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a b
EII)I.IJ =5h(_9‘-*)- (58)

Aty At

Similar expressions can be obtained for the other family of plies. Then by employing (4),

(5) and (6). we have:
a b
E[""(Ir*r)]
Eits )
( h(‘-'l A‘l)
1 =G| i- 2. b
M -G_.[l h(lt.'ll,)]' (59)

The energy released per unit volume by forming joint intralaminar and interlaminar damage
can be estimated through a holding stress approach:

My =cy E.+c2

b
u”—ﬁ{hlhyaﬂ (60)

which can be transformed to the crack surface encrgy and the interfacial energy in the spirit
of the Griffith criterion :

(61)

and a similar expression for the anti-phase shear case ; y, and y; are the specific surface and
interfacial energy, respectively. Aside from the material parameters, the right-hand side
of (61) depends on the loading, whereas the left-hand side of (61) relies on the crack
geometry. The energy conservation equation (61), in combination with the delamination
condition:

mJ1< ) K., (62)

may provide the laws governing the evolution of the crack geometry.

6. ATTENUATION OF INTERLAMINAR SHEAR SINGULARITY

The physical significance of the perturbed equation (37) lies on the attenuation of the
interlaminar shear stress singularity near the bonding edges. As a first order approximation,
(37) is replaced by:

S = f{w) = f(u), f(£1)=0, (63)

where /(1) is the solution of (42). It was shown by Vekua (1961) that such a direct iteration
results in a uniformly valid asymptotic solution for the singular integrodifferential equation
(37). The solution of (63) is straightforward :

SAS 29:10-1
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! cosh (u/e) [

_ i ‘ {s—u)ie u-ae
f.(u)-zs[f € ﬂs)d”ﬁ STOG CwW)

e f(5) ds:l. (64)

The interlaminar shear stress can be obtained by differentiation :

t(w) = % [cosh (%) f_l e~ =2 (s) ds+'[ sinh (f‘e—s)r(s) ds]. (65)

for small e. An important consequence by incorporating the shear deformation mode into
the thin ply is the removal of the interlaminar shear stress singularity at the bonding edges.
A bounded edge shear stress can be calculated through:

1
() = 1f e~ U1=7e ¢(s) ds. (66)

€)1

At the other extreme, one can prove that:
1. (u) = t(u), (67)

for sufficiently large r = (1 —u)e; this grants t(v) the status of the outer solution of r,.
Equation (66) clearly demonstrates that the bonding edge stress is influcnced by the outer
solution t(x) through a fast decaying weight function, like a non-local relation. A very
rough estimate, in order to obtain the inner approximation of t,, is to assume a one term

expansion for t:
\/ 2 k 68
t(ll) ~ 7;7\- T ( )

A convergent infinite series

k £y '.21' 2 (2'.)21'4-(3/2)
“ s (-2 ) ©

is then obtained for small r; ¢,(1) and its inner and outer expansion are shown in Fig. 9 for
the parameter setting a/(At,) = 10, b/(4t,) = 5, e = 0.05. It is observed that the perturbed
solution t.(«) and the outer solution () have to cross over in order to maintain the same
static equilibrium. The highly localized nature of t(u) (as demonstrated by our numerical
solution) degrades the accuracy of the solution (69) based on the approximation (68). The
importance of (69), however, lies in an explicit depiction of the parameter dependence of

the real bonding edge stress:
/EE[ 30 =vv.) :I”J plane strain
bY-3 YT DNRYTINEEY
25 L2(1+v)(1 +97) (70)

tcdgc = ﬁké 3 1/4
G, | =——— anti-plane shear
: [,M“M”] P

where § is a factor slightly less than 1. Apparently, 1., depends on the cracked laminate
geometry only through the factor Sk (which is usually about unity). Accordingly, a delami-
nation criterion based on the shear stress singularity K, ; as (52) is equivalent to a more
physically appealing delamination criterion based on the shear stress at the bonding edge.
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inner solution

outer solution

oYy > + 4 " Ve o

0 1.00 2.00 3.00 4.0 3.00
r

Fig. 9. Transition of the intcrlaminar shear stress from the inncr solution to the outer solution.

7. IMPERFECT ADHESION MODEL

The damage modelling discussed in the previous sections tacitly leads to a pseudo-
elastic damage behaviour. The damage is completely described by the change in the secant
moduli, without any accommodation for the permanent damage strain and the formation
of hysteresis loops, sec the dashed lines in Fig. 10. These predictions, which are albeit

- Q|
D)

-t
Fig. 10. Schematic macroscopic stress-strain curves for composite laminates predicted from theories
with (a) and without (b) interlaminar slip.
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inevitable from most nowaday composite damage theories, contradict the experimental
findings for composite laminates. A physically sound remedy is to introduce a suitable
localized slip deformation along the interlaminar boundary. It is conceivable to assume
that the adhesion layer between two neighbouring plies can only support a maximum shear
stress r,. When cither t, or t; reaches z,, slip occurs without decohesion. For simplicity,
here we assume that t, is insensitive to the slip deformation history, and we eliminate any
coupling between t, and t, through a yield condition of the adhesion layer. The relaxations of
the above-mentioned hypotheses would encourage more elaborate macroscopic constitutive
models capable of describing phenomena such as gradually stabilized hysteresis loops and
non-normality damage evolution. With the present simple model of imperfect adhesion.
slip occurs at a distance r, from both bonding edges when the absolute value of the shear
stress reaches t,. Denoting this relative slip by :

sslip = geslip- (7 l)

then we can modify (42) as:

A ]
;I 1" cot [n(s — u)]z(s) ds—J.

t(s)ds = | —ego(w). ue(-1,1), (72)
1

which is suitable for an arbitrary loading history. For monotonic loading, (72) can be
clarified as:

A 1-R u
—f n cot [n(s —w)]t(s) d.v-—f t(s)ds
T Jr-1 R~

- A sin [n(1 + «)] sin {n(1 — )]
=1 “"{“ e [7(1 = R+w)]sin [n(l —R—u)]}' (13)

in the current non-slipping region (R—1, 1 = R), where:

r, 1,
A= =%
E .
7= AEz—-S plane strain,
= AE(MMsg)~"?  anti-plane shear. (74)

Equation (73) serves as the governing equation to solve t(s). The result can be substituted
back to evaluate e,;;,:

A sin [n(1 +u)] sin [7(1 ~ )]
Cuip () = "“’{"“* z " TGt 1= R)lsin [n(u—l—R)]}

A 1-R
—;J. neot[n(s—wlt(s)ds, ue(l—R,1). (75)
R-1

The relative slip between interlaminar crack tips is given by :
8, = 2é(a—b)4A,, (76)

where
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1
A, = L . Caip(u) du. an

Equations (72) and (77) can be converted to the standard integrals:

1 a
%J' 1 cot [ri(s —u)]e(5) ds— (1 —R)J t($) ds
-1

_ sin [rj(x+ )] sin {n(x— )] .
=l-w {R+nl sm[ry(l-&-u)]sm[ry(l-—u)]} ge(=11), (18)

A =R—w{ﬁz—+éj. i Snlh@=o] } R)_[ sin [i(x—3$)] (@&

s 2 mn)o sin[n(2- R—u)] " sin sin [i(1 —9)]
9
by the variables’ transformations:
. . i l
u=(1-R, s=(1=R)s, 1(5)—1(5), ”=i——_-7(' a=l_—_R’ (80)

in order to facilitate the numerical calculation. A numerical scheme has been developed to
solve t(§) and R in (78). We first dccomposc t(§) as:

I
t(.\’)=w[.§'— 11-1: G(s)], @1)

where G(5) is a skew-symmetric, bounded function. Its values on a set of discrete point 5,
can be computed effectively by the following numerical scheme (Erdogan, 1980) :

! i('—‘){ 2A1 sin (245,)
2m+1, *7 | cos (24is,) — cos (21i,)

—RHU—k—ﬁ)}G(S‘k)=y(ﬁ;). j=L....mm+1, (82)

where §;, and &; are zeros of the Chebyshev polynomials U,,,(5,) and Ty, (4))

. kn J=2
$e =cos o = cos (2m+l ) (83)

and the right-hand side function g is given by :
1-R , . . .
g@) =w '-R- —i_(l —us)— % {ln sin [fj(a+ &)] sin [f(x—a)]

—I Insin[ﬁ(f-—&)]df}, (84)
1

which is bounded uniformly foriie (— 1, 1). For an assumed value of R, the first m equations
in (82) become linear algebraic equations of G(5,), k = 1,...,m, and can be solved immedi-
ately. The last equation (j = m+ 1) can be used for the iteration of R. The results for R are
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Fig. 11. Normalized slip length versus aspect ratio of slip stress w. Case af(41,) = 10, b/(At,) = 5.

normalized and plotted versus w in Fig. 11 for a/(4¢,) = 10 and b/(At,) = 5. After obtaining
() at discretc points 5;, 4, can be evaluated through the formula (79) and is plotted against
w in Fig. 12. Both R and A, decay rapidly with respect to w.

In the case of small scale slipping (i.e. either large @ or small R), t(5) in (72) may be
approximated by :

0 10.0 2.0

Fig. 12. Normalized intralaminar crack tip slip versus w. Case a/(it,) = 10, 8/(4¢,) = 5.
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1(8) = to{(1—rp)s; Al @85

where 7,(s; A.#) is the perfect adhesion solution parameterized by A and #:

1 ]
%J- i cot [ri(s—u)]ro(s)ds—j o(s)ds =1, ue(-1,1), (86)
1 -1

which is known from the previous calculation in Section 4. The approximation (85) is
similar to the small scale yielding solution in fracture mechanics in the sense of Irwin; r,is
termed fitting distance, with the following definition :

B(1—r))

l—r) =
o "_r) ,_——r,(z—rf)

and the transformation parameter s stands for /(1 —r,). By global equilibrium (similar to
the static equilibrium requirement in the case of small scale yielding in fracture mechanics),
we determine R by insisting that (78) is satisfied at u = 0 (which is also consistent with our
previous numerical scheme of R iterations) :

=, @8N

0

A 1
nj i cot (s)r(s)ds— (1 —R)J
R -

2A . sin r]] (88)

(s)ds = l-(u[R-l»— -—In — 1.
‘ T osing

For small R or r,, this cquation reduces to:

t-r,
J) To(s) ds
[}
Rxr |2+ x 2r;+0(r}'?), (89)

CEat)
w l+—1-t—r1cotq

under the assumption that (87) is replaced by :

L (kY
r,z;[—l{(a). 90)

When plotting R, normalized by the small scale slipping value (2/aA)(k/w)? in Fig. 11 we
observe that their ratio approaches unity for large w. A simplified formula of A, under the
small scale slipping assumption is given below :

1 An AL1=R (' sin(n—shH)
AP x R-wR (i+~{€0t 2'1)'- ; l—ff_[,_| In s—im‘l’o(a‘)d& (91)

in order to complete this section.
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8. MONOTONIC AND CYCLIC STRESS-STRAIN CURVES
Figure 13 shows schematically the formation of the macroscopic damage strain. The

permission for a slip at the bonding edge will enhance the macroscopic damage strain in
the broken ply:

d.+9,
2a '’

(92)

=D —
Efz =

indicating further softening as shown by the solid line in Fig. 10 in comparison with the
dashed line for the perfect adhesion model in the case of monotonic loading. The difference
between the two models becomes more pronounced when considering a cyclic load path as
shown in Fig. 14. The critical issue here is that J, cannot be fully recovered in the model
allowing interlaminar slip, so that a permanent damage strain remains after complete
unloading.

To illustrate this point, let us consider the interlaminar shear stress distribution for a
cyclic loading path, as shown in Fig. 14. First the loading increases monotonically from
zero to 6,. with the interlaminar shear stress distribution shown by the dashed line. The
slipped region has a length R(w,) and a slipped distance

lal

l

O, = 25,(a—0)A,(w,)., w, =3 93)

~N¢

The unloading process toward 6, can be regarded as the superposition of a reverse loading
Ad with a reverse slip occurring at 2t,. The reverse slip caused by this procedure is:

s
A8, = —28i(a~b)A,(Aw)., Aw = :;r (94)

The remaining slip at the loading level 6, is then given by :

-\] no slip
-} at bonding
edges

>

N

-
emim—

(a) (b) (c)

Fig. 13. Formation of macroscopic damage strain. (a) Initial intralaminar cracking. (b) Coupled
intralaminar and interlaminar cracking, perfect adhesion. (c) Coupled intralaminar and interlaminar
cracking, imperfect adhesion.
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Fig. 14. Interlaminar shear stress distribution under cyclic loading.

3,0 = 2(a—b)[5.A,(t;:)—AeA,,(i—’t:)]. 95)

The residual slip caused by a maximum value for ¢ can be assessed by setting 6, = 0:

5 = 2(a-—b)£|:A,(%)—A, (3:—)] (96)

From the rapidly decaying behaviour of A, with respect to w in Fig. 12, the majority of &,
will remain after a complete unloading. Furthermore, as shown in the solid line of Fig. 14,
there will be a residual interlaminar shear stress upon complete unloading.

The continued loading from &, to &, results in the re-occurrence of an interlaminar
shear stress profile, as shown by the dashed line of Fig. 14. The subsequent cyclic loading
will not distort the interlaminar shear stress alternation exhibited in Fig. 14. Consequently,
the simple idealized slip model introduced here leads to an instantaneous stabilization of
the hysteresis loop, as shown by the solid line in Fig. 10. The experimental data, however,
sometimes indicate a gradual cyclic shifting of the loops, which might be explained by a
more elaborate hardening rule for the slip stress 1,.

9. CONCLUSIONS

(1) A micromechanics model anticipating the geometric features of damage in cross-
ply composite laminates is developed ; it furnishes the analytical predictions covering the
damage evolution from the initial intralaminar cracking to the intralaminar-interlaminar
interaction,

(2) The calculation for joint intralaminar-interlaminar cracks indicates an instan-
taneous initial delamination, a subsequent increase of intralaminar crack density, followed
by a switch from the intralaminar cracking to substantial delamination as the load increases
monotonically. The load level, as well as the geometries of the crack pattern corresponding
to the characteristic damage state, can be determined.

(3) A square root singularity occurs at the bonding edges for the interlaminar shear
stress, provided that the thin plies are analyzed under the plane stress assumption. This
singularity can be eliminated by incorporating a shear deformation mode to the thin plies.
The obtained finite value for the bonding edge stress is relatively insensitive to the ply



1328 W. YANG and J. P. BOEHLER

thickness and can be employed as a physically reasonable criterion governing the delami-
nation process.

(4) By allowing a relative slip between the neighbouring plies, the macroscopic stress—
strain curves of the composite laminate are obtained ; they demonstrate features such as
the coupled damage softening by cracking and localized slip, the formation of irreversible
damage strain and stabilized hysteresis loops.

(5) Future investigations on a more sophisticated interfacial slip formulation, on
localized fibre breaking caused by extra interfacial stress, as well as on the gradual rupture
of favourably oriented plies, are needed for a complete understanding of the damage
behaviour of composite laminates.
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